skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rubel, Oliver"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many applications are increasingly becoming I/O-bound. To improve scalability, analytical models of parallel I/O performance are often consulted to determine possible I/O optimizations. However, I/O performance modeling has predominantly focused on applications that directly issue I/O requests to a parallel file system or a local storage device. These I/O models are not directly usable by applications that access data through standardized I/O libraries, such as HDF5, FITS, and NetCDF, because a single I/O request to an object can trigger a cascade of I/O operations to different storage blocks. The I/O performance characteristics of applications that rely on these libraries is a complex function of the underlying data storage model, user-configurable parameters and object-level access patterns. As a consequence, I/O optimization is predominantly an ad-hoc process that is performed by application developers, who are often domain scientists with limited desire to delve into nuances of the storage hierarchy of modern computers.This paper presents an analytical cost model to predict the end-to-end execution time of applications that perform I/O through established array management libraries. The paper focuses on the HDF5 and Zarr array libraries, as examples of I/O libraries with radically different storage models: HDF5 stores every object in one file, while Zarr creates multiple files to store different objects. We find that accessing array objects via these I/O libraries introduces new overheads and optimizations. Specifically, in addition to I/O time, it is crucial to model the cost of transforming data to a particular storage layout (memory copy cost), as well as model the benefit of accessing a software cache. We evaluate the model on real applications that process observations (neuroscience) and simulation results (plasma physics). The evaluation on three HPC clusters reveals that I/O accounts for as little as 10% of the execution time in some cases, and hence models that only focus on I/O performance cannot accurately capture the performance of applications that use standard array storage libraries. In parallel experiments, our model correctly predicts the fastest storage library between HDF5 and Zarr 94% of the time, in contrast with 70% of the time for a cutting-edge I/O model. 
    more » « less
  2. A ubiquitous problem in aggregating data across different experimental and observational data sources is a lack of software infrastructure that enables flexible and extensible standardization of data and metadata. To address this challenge, we developed HDMF, a hierarchical data modeling framework for modern science data standards. With HDMF, we separate the process of data standardization into three main components: (1) data modeling and specification, (2) data I/O and storage, and (3) data interaction and data APIs. To enable standards to support the complex requirements and varying use cases throughout the data life cycle, HDMF provides object mapping infrastructure to insulate and integrate these various components. This approach supports the flexible development of data standards and extensions, optimized storage backends, and data APIs, while allowing the other components of the data standards ecosystem to remain stable. To meet the demands of modern, large-scale science data, HDMF provides advanced data I/O functionality for iterative data write, lazy data load, and parallel I/O. It also supports optimization of data storage via support for chunking, compression, linking, and modular data storage. We demonstrate the application of HDMF in practice to design NWB 2.0, a modern data standard for collaborative science across the neurophysiology community. 
    more » « less